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Let G be a molecular graph, the edge modified eccentric connectivity index of G is defined as 

 
  


GEf fe feccSG)( , where fS  is the sum of the degrees of neighborhoods of an edge f and ecc(f) is its 

eccentricity. In this paper an exact formula for the edge modified eccentric connectivity index of linear polycene 

parallelogram benzenoid was computed. 
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1. Introduction 
 

Molecular descriptors are playing significant role in 

chemistry, pharmacology, etc. Among them, topological 

indices have a prominent place [15]. There are numerous 

of topological descriptors that have found some 

applications in theoretical chemistry, especially in 

QSPR/QSAR research.  

More recently, a new topological index, eccentric 

connectivity index, has been investigated. This topological 

model has been shown to give a high degree of 

predictability of pharmaceutical properties, and may 

provide leads for the development of safe and potent anti-

HIV compounds. We encourage the reader to consult 

papers [1–9] for some applications and papers [10–14] for 

the mathematical properties of this topological index. 

Now, we introduce some notation and terminology. 

Let G be a graph with vertex set V(G) and edge set E(G). 

Let deg(v) denote the degree of the vertex v in G. If deg(v) 

= 1, then v is said to be a pendent vertex. An edge incident 

to a pendent vertex is said to be a pendent edge.  For two 

vertices u and v in V(G), we denote by d(u,v) the distance 

between u and v, i.e., the length of the shortest path 

connecting u and v. The eccentricity of a vertex v in V(G), 

denoted by ecc(v), is defined to be 

 

      GVuvudvecc  |,max  

 

The diameter of a graph G is then defined to be 

max{ecc(v)|v ∈ V(G)}. The eccentric  connectivity index, 

)(Gc , of a graph G is defined as 

 

   
  


GVv

c veccvG deg)(  

The  modified eccentric connectivity index of G is 

defined as  
  


GVv v veccSG)( , where vS  is the 

sum of the degrees of neighborhoods of an edge f and 

ecc(f) is its eccentricity. 

Let  f = uv be an edge in E(G). Then the degree of the 

edge f is defined to be     2degdeg  vu . For two 

edges 111 vuf  , 221 vuf   in E(G), the distance between 

1f and 2f , denoted by  21, ffd , is defined to be 

          2121212121 ,,,,,,,min, vvduvdvuduudffd 

The eccentricity of an edge f, denoted by ecc(f), is defined 

as  

 

      GEeefdfecc  |,max  

 

The edge eccentric connectivity index of G [16], 

denoted by )(G
c

e , is defined as  

 

   
  


GEf

c

e feccfG deg)(  

 

Also the edge modified eccentric connectivity index of 

G is defined as  
  


GEf fe feccSG)( , where fS  is 

the sum of the degrees of neighborhoods of an edge f and 

ecc(f) is its eccentricity. 

 In this paper an exact formula for the edge modified 

eccentric connectivity index of linear polycene 

parallelogram benzenoid was computed. 
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2. Result and discusion 
        

In generally consider linear polycene parallalogram 

benzenoid graph  GLn  depicted in Fig. 1. 

 

 

 

Fig. 1. 

   

 

This graph has  22 nn  vertices and 143 2  nn  

edges. It is clear that the edge modified eccentric 

connectivity index of  GL1
 is 48. For computing the 

eccentric connectivity index for  GLn
 where 2n  , we 

using a new method. In this method we compute 

maximum edge eccentric connectivity and minimum edge 

eccentric connectivity for linear polycene parallalogram 

benzenoid graph  GLn . For   GLEf n we have 

  34)(  nfeccMax  and   22)(  nfeccMin . 

 

 

 
 

Fig. 2. The edges set with same eccentric connectivity  

in L5[G]. 

 

With respect to Fig. 2, it can be seen that we have 4 

edges with the maximum edge eccentric connectivity 4n-3 

such that the sum of the degrees of neighborhoods of them 

is 5 and we have 4 edges with the edge eccentric 

connectivity 4n-4 such that the sum of the degrees of 

neighborhoods of them is 9. Also we have n-1 edges with 

the minimum edge eccentric connectivity 2n-2 such that 

the sum of the degrees of neighborhoods of them is 16 and 

we have 4(n-1) edges with the edge eccentric connectivity 

2n-1 such that the sum of the degrees of neighborhoods of 

4 edges of them is 14 and the remaining edges of them is 

16. On the other hand we have 2n+6 edges with the edge 

eccentric connectivity 2n such that the sum of the degrees 

of neighborhoods of them are 10, 9, 6 and 16. According 

to Table 1 we specify the number, edge eccentricity and 

the sum of the degrees of neighborhoods of another edges. 

Therefore we have:  

 

    
 

 nL 4 5 4 3e ff E G
G S ecc f n


        

    nnnnn 223229421044494 

  1)-(2n168)-(4n1-2n144262  n  

    









1

2

12

5

12k-4n56k-4n402)-(2n161)-(n
n

k

n

k











1

3

1

2

4)-2k)(2k-(4n168)-1))(4k+(2k-(4n16
n

k

n

k

. 

 

Thus we have 

   140 +120n  - 72n- 128n 23 GLne
. 

 

Now we obtain the following theorem: 

Theorem 1. The edge modified eccentric connectivity 

index of  GLn  is computed as 

 

   140 +120n  - 72n- 128n 23 GLne
, 

where 2n . 

 
Tabel 1. Types of edges in  GLn

. 

 

Types of edges num ecc fS 

1 4 4n-3 5 

2 4 4n-4 9 

3 4 4n-5 10 

3 4 4n-5 14 

3 0 4n-5 16 

4 4 4n-6 10 

4 2 4n-6 16 

5 4 4n-7 10 

5 4 4n-7 14 

5 4 4n-7 16 

6 4 4n-8 10 

6 4 4n-8 16 

7 4 4n-9 10 

7 4 4n-9 14 

7 8 4n-9 16 

... ... ... ... 

2n-3 4 2n+1 10 

2n-3 4 2n+1 14 

2n-3 4n-12 2n+1 16 

2n-2 4 2n 10 

2n-2 4 2n 9 

2n-2 2 2n 6 

2n-2 2(n-2) 2n 16 

2n-1 4 2n-1 14 

2n-1 4(n-2) 2n-1 16 

2n n-1 2n-2 16 
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